Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 105(6): 2319-2332, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33599793

RESUMEN

The potential utilization of corn bran acid hydrolysate (CBAH) was evaluated as an inexpensive feedstock for the production of a rich carbohydrate and protein medium for lasiodiplodan (LAS) production using the filamentous fungus Lasiodiplodia theobromae CCT 3966. Experiments were performed according to a 22 CCRD experimental design aiming to evaluate the influence of agitation speed (rpm) and temperature (°C) over the production of total cell biomass (TCB) and LAS concentration released to the medium (LAS-M), adhered to biomass (LAS-C), and total (LAS-T). Under the selected conditions (temperature of 28°C and agitation of 200 rpm), 8.73 g·L-1 of LAS-T and 4.47 g·L-1 of TCB were obtained. Recovery of LAS-C with hot water was shown as an alternative to increase the production concentration, although it might require further purification steps. CBAH potential for substitution of synthetic media was demonstrated, indicating that it is an adequate raw material containing all necessary nutrients for LAS production.Key points• Corn bran acid hydrolysate is presented as a suitable substrate for ß-glucan production.• Lasiodiplodia theobromae CCT 3966 have the potential for the industrial ß-glucan production.• Simple recovering of biomass-adhered lasiodiplodan by hot water extraction.


Asunto(s)
Ascomicetos , beta-Glucanos , Biomasa , Zea mays
2.
Metabolites ; 10(12)2020 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-33322101

RESUMEN

The production of biomolecules using agro-industrial by-products as feedstock is a growing trend worldwide. Selenium (Se) is a trace element essential for health, and the Se-enrichment of yeast biomass can enhance its benefits. This study investigated the feasibility of the production of Saccharomyces cerevisiae Se-enriched biomass using a medium composed of corn bran and soybean bran acid hydrolysates as carbon and nitrogen sources in a stirred-tank reactor. After hydrolysis, hydrolysates presented complex composition and high concentrations of sugars, proteins, and minerals. The use of a stirred-tank bioreactor leads to the production of 9 g/L S. cerevisiae biomass enriched with 236.93 µg/g Se, and 99% cell viability. Likewise, the combination of sugarcane molasses and soybean bran hydrolysate was effective for cell growth of a probiotic strain of S. cerevisiae with a 24.08% ß-glucan content. The results demonstrated that starchy acid hydrolysates are low-cost and efficient substrates for the production of yeast biomass and derivate products and may contribute to further studies for a sustainable development of biorefinery technologies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...